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Abstract

The surface �tensile test�, in which tangential loads are applied through surface mounted adhesive tapes, is a viable
method for the assessment of mechanical properties of soft materials, particularly biological soft materials in vivo. In
the present work the deformation pattern and force–displacement relationship in the surface tensile test were
experimentally investigated using surface displacement analysis (SDA) and numerically simulated using finite element
modelling. The experimental and FE results showed close agreement using silicone rubber as a model material. The
force–displacement relationship was found to be dependent on the tape separations. SDA measurements and FE
simulation showed that the displacement and strain fields were not uniform and the distribution pattern varies with tape
separation. A combined experimental–numerical approach to inversely extract material properties using multiple tests
with different length scales is proposed and assessed using a model material.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface �tensile tests�, in which tangential loads are applied through surface mounted adhesive pads,
have been recognised as viable methods for assessment of mechanical properties of soft materials and
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particularly in the bioengineering field (Wijn, 1980; Serup and Jemec, 1995; Piérard, 1999; Vescovo et al.,
2002; Ren et al., 2003). A common testing configuration (Fig. 1a) consists of two adhesive tapes; one is
uniaxially loaded while the other one is static. This testing method is non-destructive, which does not re-
quire a pre-cut specimen as in conventional tensile tests. It can also assess directional properties of an
anisotropic medium; this makes it more attractive than the other more common loading mode (e.g. inden-
tation) in certain situations (e.g. in vivo skin testing). Due to its complex configuration, the mechanics of
the materials under such a loading mode is much more complicated than in conventional tensile tests, in
which the material behaviour can be described by a simple stress–strain relationship. It is therefore essen-
tial to characterise the displacement–strain patterns in this loading configuration and to investigate the
possible effect of the dimensional parameters. Due to the complexity of the strain and stress condition
in such surface tests, the material properties have not, so far, been determined by this approach. It can
only be used to study comparative materials� behaviour with no direct reference to the real material prop-
erty. This has made the interpretation and comparison of results from different sources very difficult. A
validated method to extract the material properties will greatly enhance its further application in many
(a)

(b)

Loading tape 

b

a

t

a

X

Y

Static tape 

Support platform

Load cell

Rigid card, 
 thickness =0.28mm

Rigid card,
thickness = 0.28mm

Fixed

t = 2, 5, 10, 30, 50 mm

Static Clamp 

80mm

200mm

200mm

Fixed tape
(a=10mm, b=20mm )

Z

Y

X

Loading tape
(a=10mm, b=20mm)

Rubber block 
(200×200×80mm)

Fig. 1. Schematic to show the surface tensile test and the set-up of the experimental work. (a) Surface tensile test and the dimensional
parameters, where x, y, z are the coordinates; b, width of the loaded area; a, length of the loaded area; t, tape separation. (b) Schematic
to show the set-up of the experimental work (unit mm).
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fields. Analytical works (Ren et al., 2005) on a simpler case (i.e. with one tape only) indicated that mate-
rial properties may be determined from the load displacement data acquired from different test
geometries.

Imaging techniques are very suitable candidates in studying the mechanical behaviour of materials.
Smith et al. (1999) successfully used surface displacement analysis software (SDA, Instron Corp., USA)
to investigate the displacement and strain of several foams under indentation. Petras and Sutcliffe
(1999), using similar software, studied the deformation of sandwich beams. Zhang et al. (2002) used digital
correlation to evaluate the mechanical behaviour of arterial tissue in vitro. One advantage of these non-
contact methods lies in that there is no change in stiffness resulting from the presence of a sensor. These
image analysis methods coupled with finite element modelling are useful tools for study of the mechanics
of materials.

In this paper, the mechanics of surface tensile testing are jointly investigated by experimental measure-
ments and numerical simulation using silicone rubber as a model material. The slope of the applied shear
stress and displacement data is used to describe the materials behaviour, and the effects of dimensional
parameters (mainly the separations between adhesive tapes) were investigated. The displacement–strain
patterns were measured using SDA, which showed consistent results with the FE modelling. The effect
of loading geometry on the load–displacement relationship were predicted and discussed. Based on the re-
sults, a combined experimental–numerical approach to inversely extract material properties using multiple
tests with different length scales is proposed and validated using a model material.
2. Methods and materials

2.1. Experimental

Blocks of silicone rubber (Dow Corning, 3-3615) with base and catalyst in a 1:1 ratio were made by cast-
ing into square specimens of 200 · 200 · 80 mm. The samples were de-gassed in vacuum after mixing and
then cured at 70 �C for 1 h. The Young�s Modulus (E) and Poisson�s ratio (m) for the material were mea-
sured in standard quasi-static tensile tests were found to be 0.13 ± 0.06 MPa and 0.49 ± 0.05, respectively.
The tests were carried out on a 10 kN screw-driven universal testing machine (Shimadzu AGS-D). The sam-
ple size was 10 · 5 · 100 mm and the loading rate was 5 mm/min. The Poisson�s ratio was measured using a
videoextensometer simultaneously tracking the markers on the specimen surface and the edge of the spec-
imen during the tensile test. Details of the procedure can be found in (Smith et al., 1999). The material was
found to be isotropic and the stress–strain curve is linear within the strain range of this work.

The tangential loading tests were carried out on the same tensile test machine (Shimadzu AGS-D) fitted
with a 50 N load cell. As shown schematically in Fig. 1b, the samples were placed on a rigid platform; the
bottom face of the specimen was fixed to the platform using adhesives to prevent it moving. A tangential
load was applied to the facing vertical surface via one rectangular double-sided adhesive tape (3M Health
Care Ltd, UK) with a thickness of 0.15 ± 0.01 mm and stiffness of �1.1 GPa). A second static tape was
placed near to and in line with the loading tape. Typical contact dimensions of the tapes (a · b) were
20 · 10 mm while the tape separation (t) was varied from 5 to 30 mm in the tests. The rubber block had
a cross-section of 200 · 200 mm and a thickness of 80 mm. The loading tape and static tape were positioned
symmetric to the horizontal centreline of the rubber block, and the distance between the outer edges of the
tapes and the ends of the rubber block varied from 88.5 to 50 mm depending on the tape separation. The
back of the loading and static tapes were adhered to lengths of card (E � 2 GPa, thick-
ness = 0.28 ± 0.01 mm) themselves clamped to the load cell and machine base, respectively. Because the
card has a small flexural stiffness in this configuration the load normal to the sample surface was considered
to be zero.
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The loading speed was 8.33 · 10�5 m/s (5 mm/min) for all the tests, up to a maximum displacement of
0.5 mm in a linear ramp. No slipping of the adhesive tape was observed within this test range. Two types of
measurements were taken on consecutive test runs; the first was data on the displacement of the lower edge
of the adhesive tape and the second was on the displacement field of the sample surface between and around
the loading tape. Both sets of data were compared with the FE simulations. The displacements of the edges
of the adhesive tapes were measured using an edge following strain measurement system (Videoextenso-
meter, Messphysik GmbH, Austria). This requires a CCD camera mounted normal to the sample surface
connected to a PC running proprietary software. Data was written to file for post-test analysis.

A second system—Surface Displacement Analysis Software (SDA, Instron Corp., USA) was used to
measure the displacement fields generated around the tapes (later shown in Fig. 5). Similar software based
systems have been described previously (Smith et al., 1999; Petras and Sutcliffe, 1999). The process involved
capturing a series of images of the surface during loading. The SDA software calculates the displacements
of a number of �cells� within a designated �area of interest� (AOI) using a cellular correlation algorithm to
determine the displacement of the centre of each cell in the AOI between a reference frame (normally the
starting frame) and a second later frame (normally the end of the test). A map of displacements for each cell
within the AOI is generated.

2.2. FE models

The test configuration was modelled by finite element analysis. Due to plane symmetry, half of the sam-
ple and tangential loading was modelled (ABAQUS 6.2) as shown in Fig. 2. The dimension of the model is
200 · 200 · 80 mm with a scale of 1:1 to the real sample. The Young�s modulus used was 0.134 MPa and a
Poisson�s ratio of 0.49.

The model was meshed with solid eight noded elements (C3D8) assuming elastic material behaviour. All
the nodes on the mid-plane were constrained to simulate the symmetry; the end face was constrained to
simulate the boundary condition with the supporting platform. The tape was modelled as a rigid body since
it is much stiffer than the specimen. A concentrated force was applied to the loading tape representing the
pulling load (F), while the static tape was fixed, i.e. no movement in X and Y directions. A convergence
study showed that approximately a mesh of 55 · 30 · 15 elements, for the length, width and through thick-
ness, respectively, were required, with a finer mesh underneath and around the loaded area to increase accu-
racy. Care was taken to ensure the aspect ratio of the element did not extend the guideline value of 1/5. The
largest differences in the displacement of the loaded areas were within 5% of a model with twice the mesh
density, thus the mesh density was shown to be sufficient.
3. Results and discussion

3.1. Applied shear stress–displacement relationships

The mean applied shear stress (q0) could be determined by dividing the total pulling force (F) by the ad-
hered area, i.e.
q0 ¼
F

a� b
ð1Þ
Typical experimental and FE results are shown in Fig. 3 for various values of tape separation, t. In all of the
cases, the relationship between the applied tangential shear stress and the displacement of the tape, from the
FE simulation, showed good agreement with the experimental results. All of the test data are approximately
linear. Clearly, the slope of these data represents the resistance of the material. The decrease of this slope



Fig. 2. The FE model: (a) FE model in 3-d, (b) mesh of the top face, (c) mesh of mid-section though the thickness.
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might, at first thought, be associated with both an increase of tape separation and a decrease of the distance
of the tapes from the edges of rubber block. To guard against this second effect the shortest distance be-
tween the tapes and the edge of the specimen was limited to approximately three times that of the contact
length.

Fig. 4 summarises the slope of the applied shear stress and displacement data from experimental tests
and FE simulation for various loading dimensions. The x-axis is the ratio of tape separation and adhered
length (t/a). For all of the testing dimensions, the experimental and FE results are in good agreement, sup-
porting the validity of the FE model. The slight deviation of the model predictions away from the exper-
imental data (maximum 10%) is probably due to the error in some testing conditions, e.g. incomplete
contact between tape and sample surface, etc.

As shown in the Fig. 4, the slope of the applied shear stress and displacement data decreased as the tape
separations increased. The decrease was clearly more pronounced for shorter tape separations (i.e. shorter
than one tape length). When the tape separation was over three times the tape length, the change became
t/a
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Fig. 4. Effect of tape separation on the slope of the applied shear stress–displacement data from the experimental tests (symbols) and
FE simulation (line). The x-axis (tape separation) is normalised against the length of the tape.
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very small. The difference between the slope for tape separation of 30 and 50 mm is less than 5% for all the
data. This shows that the scale of the effect is principally associated with the ratio of the tape separation and
the tape length. When the tape separation is over three times the tape length, its effect becomes very limited
and can be ignored.

3.2. Displacement and strain distribution

The pattern of deformation on the surface of the sample between the loading tape and static tape was
measured using the SDA software. Fig. 5 is a typical SDA image showing the surface deformation field in
the loading direction (Ux). The main area of interest (AOI) was placed between the two tapes. Each cell in
the image has a centre point and the vectors represent the displacement of these centre points. The scale
of the line is an indicator of the magnitude of surface displacement, which has been magnified by 20 for
clarity. The vectors represent the displacement between the final frame and the initial frame, with an
applied tape displacement of about 0.5 mm.

Fig. 6 shows the measured and FE model predicted displacement field by plotting the corresponding field
in the same scaling. The displacement field between the two tapes (AOI in Fig. 5) agreed well with the FE
simulation results. The waviness of the contours in the SDA image is mainly due to experimental noise
rather than reflecting real material behaviour. Fig. 7 plots the displacement data along the central axis
in the loading direction for various tape separations with a fixed tape dimension (i.e. a = 10 mm,
b = 20 mm). The SDA data (symbols in Fig. 7) was consistent with the prediction of the FE simulation
(lines in Fig. 7). In general, results in Figs. 5–7 shows that the surface displacement field in a surface tensile
test is obviously not uniform. This is significantly different from conventional tensile tests, in which the
main displacement field is uniform and linear (except near the grips) for an isotropic material under uniax-
ial tension.

In a conventional tensile test, the Poisson�s ratio of the material could be determined using the ratio of
the lateral and the axial deformation of the materials. Fig. 8 plots a typical surface distribution of the lateral
displacement (Uy) between the tapes from FE simulation. The displacement value is much lower than the
Fig. 5. Typical displacement field calculated by the SDA software, the data in the area of interest (AOI) were later mapped in Fig. 6
and the data along the dotted line were referred to in Fig. 7. The vectors� magnitude is magnified by 20.



Fig. 6. Comparison of the displacement fields between the tapes (AOI in Fig. 5) produced by SDA (a) and FE simulation (b). All
contour values are in mm; the scaling in plot (a) and (b) is the same.
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displacement in the loading direction. This small deformation is out of the measurement limit of the SDA in
this work and no consistent results were observed, therefore no experimental result is presented. As shown
in Fig. 8, the field is symmetric along the centreline of the tapes but the displacement field is not uniform in
the lateral direction. The maximum displacement was located near the corner of the loading tape. This
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non-uniform lateral displacement field was also observed in FE models of other testing dimensions includ-
ing models of infinitely large samples. This is another significant difference between surface tensile and con-
ventional tensile tests, in which the lateral strain displacement field is uniform and the lateral strain can be
readily measured to calculate the Poisson�s ratio under uniaxial tension. FE simulation also shows that the
out of plane deformation is much lower than the in plane deformation (result not shown), which suggests
that the image analysis method is suitable for the task. For most of the image displacement analysis pro-
grams, both the surface displacement and the strain were measured ignoring the out of plane deformation.
The out-of-plane deformation must be significantly lower than the in plane deformation for the technique
to be applicable (Zhang et al., 2002).

Fig. 9 shows typical strain data along the centrelines at the loading direction, together with FE results for
various tape separations. As shown by the curves, the strain distribution along the centreline produced by
the SDA and FE agreed well. It is also shown that the strain field between the tapes is not uniform and not
symmetric to the centreline between the tapes. The surface strain is higher near the loading tape and lower
toward the static tape. This suggests that the surface strain should not be simply calculated by dividing the
tape displacement by the tape separation. In addition, the material effectively involved in the deformation is
not clearly defined. Therefore, the behaviour of material is best represented using the applied shear stress–
displacement relationship rather than the stress–strain relationship.

3.3. Material properties prediction

As shown in Figs. 7–9, the applied shear stress–displacement data and strain distribution varied with
tape separations, which indicate different stress–strain states. This phenomenon can be used to extract
the material properties by reproducing the experimental data via finite element modelling of tests with dif-
ferent length scales. This was assessed using the model materials, which is a simple case with two material
properties, i.e. E and m. So even though direct measurements of lateral deformation were not available both
E and m can be determined from different sets of longitudinal data.

Fig. 10 is a flow chart showing the proposed approach used to extract the material properties of the rub-
ber block used in this work with tapes of adhered area 20 · 10 mm and three tape separations (t = 5, 10 and
20 mm). In the initial stage, one test result (in this case, tape separation, t = 10 mm) is used to screen the
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Fig. 10. Overview of the mixed experimental and parametric modelling approach to extract the material properties.
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Young�s modulus values over a wide range (0.001–10 MPa). For most materials, Poisson�s ratio is known to
be between 0 and 0.5, unless the structure of the material implies the possibility of a negative Poisson�s ratio
(Lakes, 1987). Preliminary modelling showed that the shear stress–displacement data continuously varied
with the Poisson�s ratio; therefore these two values (i.e. 0 and 0.5) could be used to determine the higher and
lower bounds of the Young�s modulus. Fig. 11 shows the shear stress–displacement data vs. Young�s
modulus with a 10 mm tape separation (in log scales). The horizontal lines represent the testing result
Fig. 11. Initial screening of the range of the Young�s modulus (in log scales) (a = 10 mm, b = 20 mm, t = 10 mm).
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and the upper and lower error limits. The intersection point between the modelling and testing results were
used to define the range of the Young�s modulus. The Young�s modulus is found to be between 0.11 and
0.16 MPa, which represents a 60% range.

As listed in Fig. 10, in the second stage, parametric studies were performed to close down the range of
the material properties. In the parametric studies, the Young�s modulus was varied from 0.1 to 0.18 MPa
with an increment of 0.01 which gives the predicted Young�s modulus an accuracy about 10%. Three
Poisson�s ratio values used were 0, 0.25, and 0.499. Three FE models with the tape separations of 5, 10
or 20 mm were used in the parametric studies.

The predicted shear stress–displacement results for each combination of material properties (i.e. E and m)
were compared to the testing result for the corresponding dimensional condition. The average between the
modelling (with one combination of E and m) and testing results was calculated using Eq. (2)
SðE; mÞ ¼

Xn

i¼1

X ðE; mÞ � X i

X i

n
ð2Þ
where S(E,m) is the average error between the FE results (3 models) for a set of material properties and the
testing results; X(E,m) is the FE modelling results using a set of material properties (E,m); n is number of
testing conditions, n = 3 representing the three tape separations; X is the experimental data.

Fig. 12 summarises the S values for all the material properties sets used in the parametric studies. As
shown in the figure, when the Young�s modulus is 0.13–0.14 MPa with a Poisson�s ratio 0.499, S is the low-
est; while the results with other material properties are higher. This suggests that these are the level of the
material properties. The predicted result showed very good agreement with the real material properties (i.e.
E = 0.134 N/mm2, m = 0.49) with an error within 10%. As shown in Fig. 12, the effect of Young�s modulus
is much more significant than the Poisson�s ratio. There is little difference in the curves for Poisson�s ratio 0
and 0.25, but the curve for Poisson�s ratio 0.49 is clearly different. Normally, the Poisson�s ratio is measured
from lateral strains due to an imposed axial strain in a standard tensile/compression tests where an isolated
specimen is available. However, in surface tensile tests as studied in this work, the volume of the displaced
materials is not clearly defined and the displacement field between the tapes is non-uniform as shown in
Figs. 7 and 8. These complex displacement fields made it difficult to obtain the strain values to directly cal-
culate the Poisson�s ratio analytically. There is no available analytical solution for the testing configuration
to directly analyse the effect of materials properties on the force displacement data; however, for a simple
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case as in a point tangential loading on an elastic half space, the tangential displacement can be calculated
using equation (Johnson, 1985):
u½ � ¼ 1� 2mð Þ 1þ mð Þ
2E

Q ð3Þ
where Q is a unit concentrated tangential force, which acts tangentially to the surface over an elastic half
space; E is the Young�s modulus; m is the Poisson�s ratio.

So the force displacement relationship can be represented by
Q
u½ � ¼

2E
1� 2mð Þ 1þ mð Þ ð4Þ
According to Eq. (4), the force displacement relationship will be affected by both the Young�s modulus and
the Poisson�s ratio. In addition, when the tape separation increases, the stress strain state of the materials
between the tapes changes, e.g. from a state closer to plain stress (�E) to a state closer to plain strain
(� E

ð1�m2ÞÞ. The effect of Poisson�s ratio from both sources will contribute to the inverse modelling of the
material properties. Sensitivity tests (by comparing the values of 2E

1�2mð Þ 1þmð Þ and
1

ð1�m2Þ of different Poisson�s
ratios) showed both mechanisms will have more significant effect on the force displacement data at higher
Poisson�s ratio, which agrees with the trend shown in Fig. 12. It also (results not shown) showed that the
effect of Poisson�s ratio associated with the former mechanism (Eq. (3)) is much more pronounced than that
associated with the change of stress strain state. These demonstrated that the material properties could be
estimated using a mixed experimental and numerical method by exploring the effect of Poisson�s ratio from
these two mechanisms in particular for soft materials in surface tensile tests. Further work will be per-
formed to explore the potential effect of the specimen size to improve the sensitivity of the method.
4. Conclusions

In the present work the deformation and force–displacement relationships in surface tensile tests were
investigated jointly by experimental measurements and finite element modelling. Surface displacement anal-
ysis (SDA) was successfully used to characterise the deformation fields and showed consistent results with
FE simulation using silicone rubber as a model material.

Different from conventional tensile tests, the result of a surface tensile test was highly dependent on the
loading dimensions. The slope of the applied shear stress–displacement data is higher when the tapes are
closer. When the tape separation is over three times the tape length, its effect becomes insignificant.
SDA measurements and FE simulations revealed that both the axial and lateral displacement fields were
not uniform and the displacement and strain in the loading direction along the centreline is non-linear.
Using this different stress–strain state for different tape separations, a combined experimental–numerical
approach to inversely extract material properties using multiple tests with different length scales has been
proposed and assessed using the model material.
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